========= Inference ========= In this tutorial, we will learn how to run inference on a test data. Workflow ======== For inference, we have 2 steps: 1. Specify **LOG_DIR** (**LOG_DIR** is a directory where parameters are saved) 2. Run **predict** method (Step 1) Pre-trained Model Restoration ====================================== When training starts, a log directory where the results are saved will be made. To restore the results, specify the log directory path in a config file and pass it when initialization. .. code-block:: yaml # infer.yml LOGGER: # For default, log_dir name is randomly generated LOG_DIR: "bfb5118b-7687-453d-a8d8-6100df7d36d4" .. code-block:: python from tsts.solvers import TimeSeriesForecaster forecaster = TimeSeriesForecaster("infer.yml") To specify the name of **log_dir**, pass a config file when starting training. .. code-block:: yaml # custom-log-dir.yml LOGGER: LOG_DIR: "mymodel" .. code-block:: python import torch from tsts.solvers import TimeSeriesForecaster sin_dataset = torch.sin(torch.arange(0, 100, 0.1)) sin_dataset = sin_dataset.unsqueeze(-1) forecaster = TimeSeriesForecaster("custom-log-dir.yml") forecaster.fit([sin_dataset]) (Step 2) Running Inference ========================== Run **predict** method to infer on test data. .. code-block:: python import torch from tsts.solvers import TimeSeriesForecaster test_data = torch.arange(0, 10, 0.1) test_data = test_data.unsqueeze(-1) forecaster = TimeSeriesForecaster("custom-log-dir.yml") print(forecaster.predict(test_data)) """ Output: tensor([[0.1068], [0.2669], [0.3835], [0.4387], [0.4649], [0.4782], [0.4856], [0.4902]]) """