tsts.models¶
Functions¶
- class tsts.models.build_model[source]¶
Build model.
- Parameters
num_in_feats (int) – Number of input features
num_out_feats (int) – Number of output features
cfg (CN) – Global configuration
- Returns
Forecasting model
- Return type
Module
Classes¶
- class tsts.models.Informer[source]¶
Informer implementation.
Example
Add following section to use Informer.
MODEL: NAME: "Informer" NUM_H_UNITS: 512
- Parameters
num_in_feats (int) – Number of input features
num_out_feats (int) – Number of output features
lookback (int) – Number of input time steps
horizon (int. optional) – Indicate how many steps it predicts by default 1
num_h_feats (int, optional) – Number of hidden features, by default 512
num_encoders (int, optional) – Number of encoders, by default 2
num_decoders (int, optional) – Number of decoders, by default 1
num_heads (int, optional) – Number of heads of multi-head self attention, by default 8
contraction_factor (int, optional) – Factor which detemines the number of samples of queries and keys in ProbSparseSelfAttention, by default 5
dropout_rate (int, optional) – Dropout rate, by default 0.05
expansion_rate (int, optional) – Expansion rate which determines the number of filters in conv layers after attention, by default 4.0
distil (bool, optional) – Flag if use distillation module after each encoder except the last one, by default True
dec_in_size (int, optional) – Size of input to decoder (last dec_in_size values of input to encoder are used), by default 24
add_last_step_val (bool, optional) – If True, Add x_t (the last value of input time series) to every output, by default False
- class tsts.models.NBeats[source]¶
N-Beats implementation.
Example
Add following section to use NBeats.
MODEL: NAME: "NBeats" NUM_H_UNITS: 512 NUM_STACKS: 30
- Parameters
num_in_feats (int) – Number of input features
num_out_feats (int) – Number of output features
lookback (int) – Number of input time steps
horizon (int. optional) – Indicate how many steps it predicts by default 1
num_h_units (int) – Number of hidden units
depth (int) – Number of hidden layers per block
stack_size (int) – Number of blocks
add_last_step_val (bool, optional) – If True, Add x_t (the last value of input time series) to every output, by default True
- class tsts.models.Seq2Seq[source]¶
Seq2Seq implementation.
Example
Add following section to use Seq2Seq.
MODEL: NAME: "Seq2Seq" NUM_H_UNITS: 64
- Parameters
num_in_feats (int) – Number of input features
num_out_feats (int) – Number of output features
horizon (int. optional) – Indicate how many steps it predicts by default 1
num_h_units (int, optional) – Number of hidden units, by default 64
depth (int, optional) – Number of hidden layers, bu default 2
add_last_step_val (bool, optional) – If True, Add x_t (the last value of input time series) to every output, by default False